

NAMIBIA UNIVERSITYOF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: Bachelor of Science; Bachelor of Science in Applied Mathematics and Statistics			
QUALIFICATION CODE:	07BSOC; 07BSAM	LEVEL:	5
COURSE CODE:	LIA502S	COURSE CODE:	LINEAR ALGEBRA 1
SESSION:	JUNE 2023	PAPER:	THEORY
DURATION:	3 HOURS	MARKS:	100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER:	DR. DSI IIYAMBO	
MODERATOR:	DR. N CHERE	

INSTRUCTIONS

- 1. Attempt all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written work must be done in black or blue inked, and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1

Consider the vectors $\mathbf{p} = 3\mathbf{i} - 5\mathbf{j} - 2\mathbf{k}, \ \mathbf{q} = \mathbf{i} - 3\mathbf{j} + 12\mathbf{k} \ \mathrm{and} \ \mathbf{r} = \mathbf{i} - 6\mathbf{k}$

- a) Find a vector of magnitude 3 in the direction of q. [6]
- b) Find the angle (in degrees) between p and r. Give you answer correct to 1 d.p. [8]
- c) Calculate the projection of **p** onto **r**, Proj_r**p**. [5]

Question 2

Consider the matrices
$$A = \begin{pmatrix} -1 & 0 & 2 \\ 3 & 4 & 5 \\ 1 & 2 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ 3 & -2 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$.

- a) Without evaluating the whole product, determine the elements
 - (i) in the third row and second column of AB
 - (ii) in the second row and second column of BC [3]
- b) Given that $\alpha tr(A) + 10 tr(C) = 12$, find the value(s) of α which satisfies this equation. [4]

Question 3

Let
$$F = \begin{pmatrix} 3 & 5 & x \\ y & 8 & 4 \\ -3 & z & 3 \end{pmatrix}$$
.

- a) Given that the matrix F is symmetric, give the values of x, y and z. [5]
- b) Prove that if A and B are both $n \times n$ symmetric matrices such that AB = BA, then AB is a symmetric matrix.
- c) Prove that if A is an invertible symmetric matrix, then A^{-1} is also symmetric. [6]

Question 4

Consider the matrix $A = \begin{pmatrix} -1 & 1 & 2 \\ 3 & 0 & -5 \\ 1 & 7 & 2 \end{pmatrix}$.

- a) Use the Cofactor expansion method, expanding along the second column, to evaluate the determinant of A. [6]
- b) Is A invertible? If it is, use the adjoint method to find A^{-1} . [14]
- c) Find det $(3(2A)^{-1})$. [6]

Question 5

Use the *Gaussian elimination method* to find the solution of the following system of linear equations, if it exists.

[8]

Question 6

a) Prove that in a vector space, the negative of a vector is unique.

[9]

b) Let M_{nn} be a vector space whose elements are all the $n \times n$ matrices, with the usual addition and scalar multiplication for matrices. Determine whether the following set is a subspace of M_{nn} .

$$S = \{ A \in M_{nn} \, | \, tr(A) = 0 \}$$

[11]